Manufacturing guy-at-large.

This week: Materialise Magics 19 and SG+

Added on by Spencer Wright.

Just a little teaser:

This week, in addition to the networking I'm doing (remember: I'm a free agent now, and directing my efforts toward finding the best path for myself in metal additive manufacturing), I'll be diving deep into Materialise Magics 19, the industry standard software for metal 3D printing build processing. I'm excited to learn more about its capabilities, and will share more later this week. I'll be spending most of my time working on orientations & support structures schemes for my titanium seatpost head, seen here in Magics' simulation of an EOS M280:

Magics bills itself as "The link between your CAD file and the printed part." It's used by OEMs and service bureaus alike to prepare design files to be printed - often times on the very machines that I've been building parts on (one, two) over the past year. In most cases, Magics imports an STL file. It then can be used for three big chunks of work:

  1. Fixing. In many cases the files that you import are broken in some way (edges not connected; faces oriented in the wrong direction), and can't be printed as is. Magics has a suite of tools that analyze and solve these problems.
  2. Editing. There are a variety of reasons why you'd want to edit a design before printing it, but probably the most common is that it won't fit in the build chamber of the machine it's being printed on. Magics offers tools that cut, hollow, thicken, perforate, extrude, label, boolean, and support parts and their features.
  3. Build prep. This is the part that I'm most interested in, as it directly affect the workflow that I've beed dealing with on my titanium parts. Here, the user selects the machine that the parts will be printed on. Then the parts are oriented physically within the build chamber, and an analysis is run to confirm that there are no part collisions that will affect the build.

Lastly - and of particular interest - is the SG+ module for support generation in metals. This would fall somewhere between (and across) numbers 3 and 4 above, and involves creating solid and mesh support structures that anchor the part to the build plate and provide thermal sinks to ensure a successful build. The SG+ module is a critical part of the metal 3D printing process chain today. It's used extensively across the industry, and engineers who are skilled at support generation are highly prized.

This week I'll be exploring these features (especially build prep and SG+) extensively; stay tuned for updates.